# **Optimizing Roman Photometric Redshifts for HLIS**

#### **Brett Andrews**

In collaboration with (PhD students in blue):

- Finian Ashmead
- Ashod Khederlarian
- Yoki Salcedo
- TQ Zhang
- Jeff Newman
- **Biprateep Dey** (UToronto/CITA)
- Chun-Hao To (UChicago)
- **Emma Moran** (Pitt undergrad applying to grad school in Fall)
- Roman HLIS Cosmology PIT



**Cosmic Cartography with Roman** 7.7.2025







### Photo-z's Crucial for Roman Weak Lensing and 3x2 pt Analyses





**Boyan Yin** et al. (in prep.)  $\rightarrow$  check out her talk



# **HLIS Survey Design: Photo-z Forecasts**

- Random Forest (decision-tree-based ML method)
  - photometry: LSST *ugrizy* (Y4 depth) + Roman bands
  - assumption!)
- Simulated and Observational Data:
  - **Cardinal** simulation (Chun-Hao To et al. 2024)
  - OpenUniverse simulation (aka Roman-Rubin)
  - COSMOS2020 catalog (Weaver et al. 2022)

spec-z's: representative training set w/ 20k objects (strong)

• caveats: none perfect but provide sense of range of outcomes

### Photo-z Metrics vs. Redshift



- YJH Medium Tier
  - dropped F184 (mostly helpful at z > 3, beyond lensing sample)
- **H-only Wide Tier** 
  - 2x increase in area (vs. JH) with only slightly worse photo-z point estimates
  - be essential (*will require highly complete spec-z sample*)

but broader tomographic bins (Chun-Hao To's analysis) → controlling for systematics will

#### **Spectroscopic Incompleteness: Key Photo-z Calibration Challenge**



**Finian Ashmead** et al. (in prep.) → check out his poster COSMOS2020 *u\*grizyJH* + LePHARE sSFR LePHARE many-band *z*<sub>phot</sub>





### **Spectroscopic Incompleteness: Key Photo-z Calibration Challenge**



**Finian Ashmead** et al. (in prep.) → check out his poster COSMOS2020 *u*\**grizyJH* + LePHARE sSFR *z*<sub>spec</sub> (confidence > 95%) from Khostovan et al. (2025)





### **Creating a Representative Spec-z Training Set**

- **UMAP** as a SOM-alternative for dimensionality reduction of *u*\*grizyJH color space
- Produces thin (almost 2-D) manifold that is monotonic in redshift and specific SFR

#### photometric objects







**Finian Ashmead** et al. (in prep.) → check out his poster



## **Creating a Representative Spec-z Training Set**

- **UMAP** as a SOM-alternative for dimensionality reduction of *u*\*grizyJH color space
- Produces thin (almost 2-D) manifold that is monotonic in redshift and specific SFR
- Non-representative spec-z datasets sparsely populate the manifold, but in a physically-meaningful and wellbehaved way!
- Next step: re-weighting and interpolating spec-z datasets  $\rightarrow$  e.g., as input for SOMPZ

#### photometric objects



spectroscopic objects





Zphot



**Finian Ashmead** et al. (in prep.)  $\rightarrow$  check out his poster

|   | -8.0                                                                      |                          |
|---|---------------------------------------------------------------------------|--------------------------|
| - | -8.5                                                                      |                          |
| - | -9.0                                                                      |                          |
| - | -9.5                                                                      | r_1]                     |
| - | -10.0                                                                     | R [V                     |
| _ | -10.5                                                                     | sSF                      |
|   | -11.0                                                                     |                          |
|   | -11.5                                                                     |                          |
|   | 40.0                                                                      |                          |
| L | -12.0                                                                     |                          |
| L | -12.0                                                                     |                          |
|   | -12.0<br>-8.0                                                             |                          |
|   | -12.0<br>-8.0<br>-8.5                                                     |                          |
|   | -12.0<br>-8.0<br>-8.5<br>-9.0                                             |                          |
|   | -12.0<br>-8.0<br>-8.5<br>-9.0<br>-9.5                                     | r <sup>-1</sup> ]        |
|   | -12.0<br>-8.0<br>-8.5<br>-9.0<br>-9.5<br>-10.0                            | R [yr <sup>-1</sup> ]    |
|   | -12.0<br>-8.0<br>-8.5<br>-9.0<br>-9.5<br>-10.0<br>-10.5                   | sSFR [yr <sup>-1</sup> ] |
|   | -12.0<br>-8.0<br>-8.5<br>-9.0<br>-9.5<br>-10.0<br>-10.5<br>-11.0          | sSFR [yr <sup>-1</sup> ] |
|   | -12.0<br>-8.0<br>-8.5<br>-9.0<br>-9.5<br>-10.0<br>-10.5<br>-11.0<br>-11.5 | sSFR [yr <sup>-1</sup> ] |

## Need Deep Spec-z Training Sets



<10% completeness

Khostovan et al. (2025)

 Existing spec-z datasets sparsely cover color-magnitude-redshift space, especially at faint NIR magnitudes and z > 1

#### Subaru-PFS/Roman (SuPR) Deep Survey

- Want spec-z's down to H<sub>AB</sub> ~ 24.5 (depth of weak lensing sample) with representative colors
- Requested 50 dark nights
- 5-15 pointings w/ 60-20 hour exposure times for 10k-30k objects
- COSMOS and XMM-LSS fields (HLIS and LSST equatorial deep fields)

#### **DESI Deep Survey**

 complements SuPR Deep Survey at z < 1.6 (see Biprateep Dey talk)</li>



### **Clustering-z: Calibrating Redshift Distributions**

- Clustering-z provides an independent cross-check on photo-z distributions
- Use cross-correlations with DESI and (hopefully) Roman HLSS grism samples
- Currently testing and validating clustering-z code (RAIL YAW) with mock DESI catalogs from simulations





### Better Photo-z Performance w/ Deep Learning

- HST/CANDELS: key Roman precursor dataset
- Deep learning outperforms photometry-only photo-z's
- Semi-supervised training (inc. colors and spec-z's) beats fully-supervised and finetuned foundation models
  - Key is low-dimensional space with continuous trends in redshift and sSFR/ color (similar to UMAP insights).
- WHY? Deep learning more optimally weights redshift information in pixels than photometry (Emma Moran et al. 2025 → arxiv:2507.06299)



Ashod Khederlarian et al. (in prep.) → check out his talk

### Summary

- spectroscopic incompleteness
- Photo-z forecasts influential for HLIS survey design
- UMAP to optimally leverage spec-z datasets (Finian Ashmead poster)
- Working to obtain new spec-z training sets:
  - Subaru-PFS/Roman (SuPR) Deep Survey (Jeff Newman poster)
  - DESI-Deep Survey (**Biprateep Dey talk**)
- redshift distributions (Yoki Salcedo talk)
- precursor dataset (Ashod Khederlarian talk)

• Photo-z calibration crucial for weak lensing and 3x2 pt analyses, but must mitigate

• Testing/validating clustering-z code, which will provide an independent cross-check on

• Deep learning improves individual object photo-z's for HST/CANDELS, a key Roman

### **Bonus Slides**

#### Roman-only photo-z's will be unreliable: need LSST photometry!







### Photo-z Performance: YJH vs. JH vs. H



## **Photo-z Calibration Challenges**

redshift





Color Axis 1

Newman & Gruen (2022)



 Compared to photometric objects in color-redshift space, existing spec-z training sets suffer from

sparse sampling  $\rightarrow$  interpolation

incorrect spec-z's → robust regression

systematic incompleteness → rebalance training set to match photometric objects



### **Self-Supervised Latent Space**



• *discontinuous* redshift and color trends

**Ashod Khederlarian** et al. (in prep.) → check out his talk

### **Semi-Supervised Latent Space**



continuous redshift and color trends

Ashod Khederlarian et al. (in prep.) → check out his talk

### **Deep Learning: reduced color-dependent attenuation bias**

![](_page_18_Figure_1.jpeg)

• Emma Moran et al. 2025 → arxiv:2507.06299

![](_page_18_Figure_3.jpeg)

![](_page_18_Picture_4.jpeg)