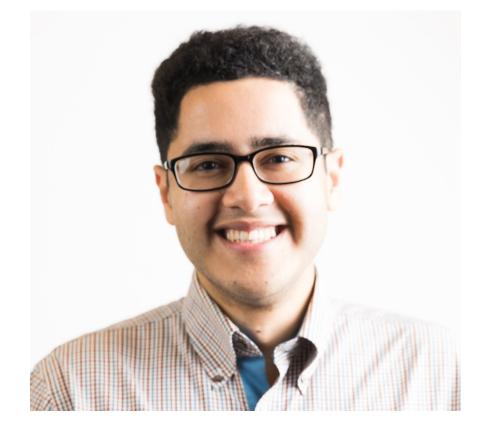
Optimizing Roman Photometric Redshifts

Brett Andrews

In collaboration with: **Jeff Newman TQ Zhang Biprateep Dey (U. Toronto/CITA)**

Finian Ashmead On behalf of:



Ashod Khederlarian

Yoki Salcedo

Roman HLIS Cosmology PIT 10.8.2024

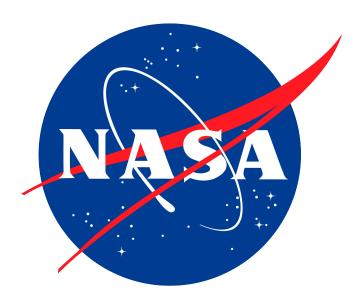
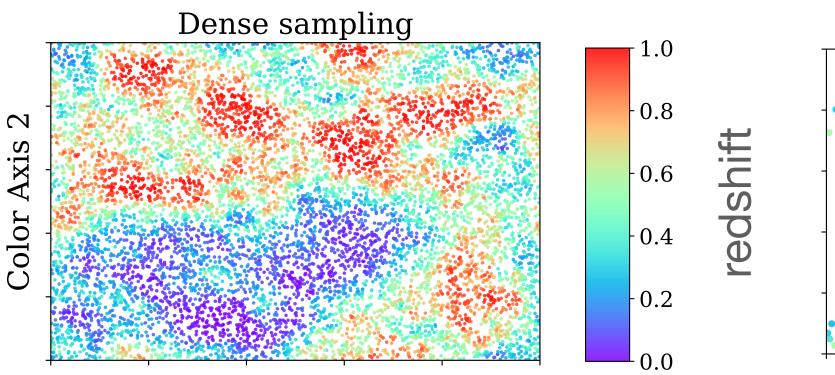
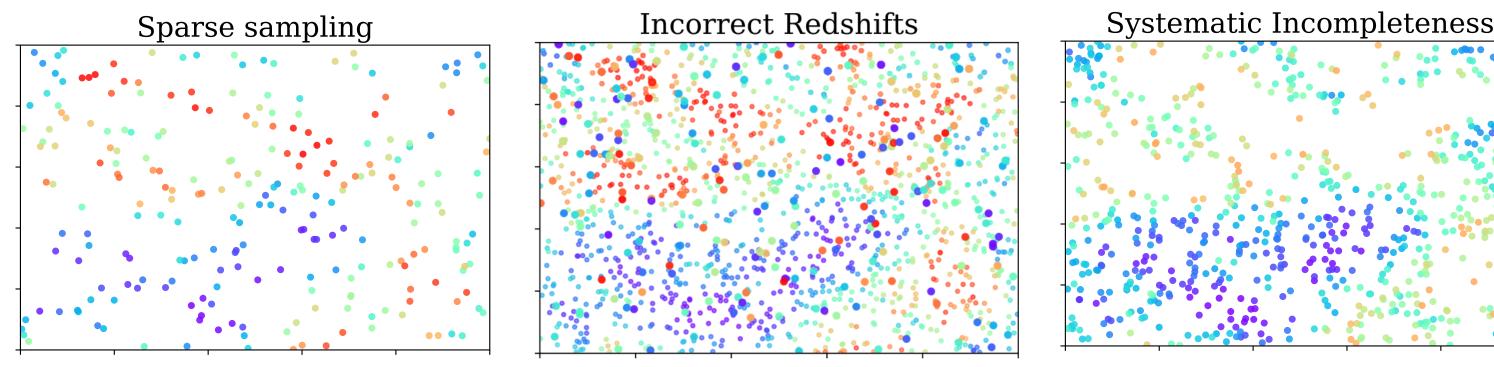


Photo-z Calibration Challenges





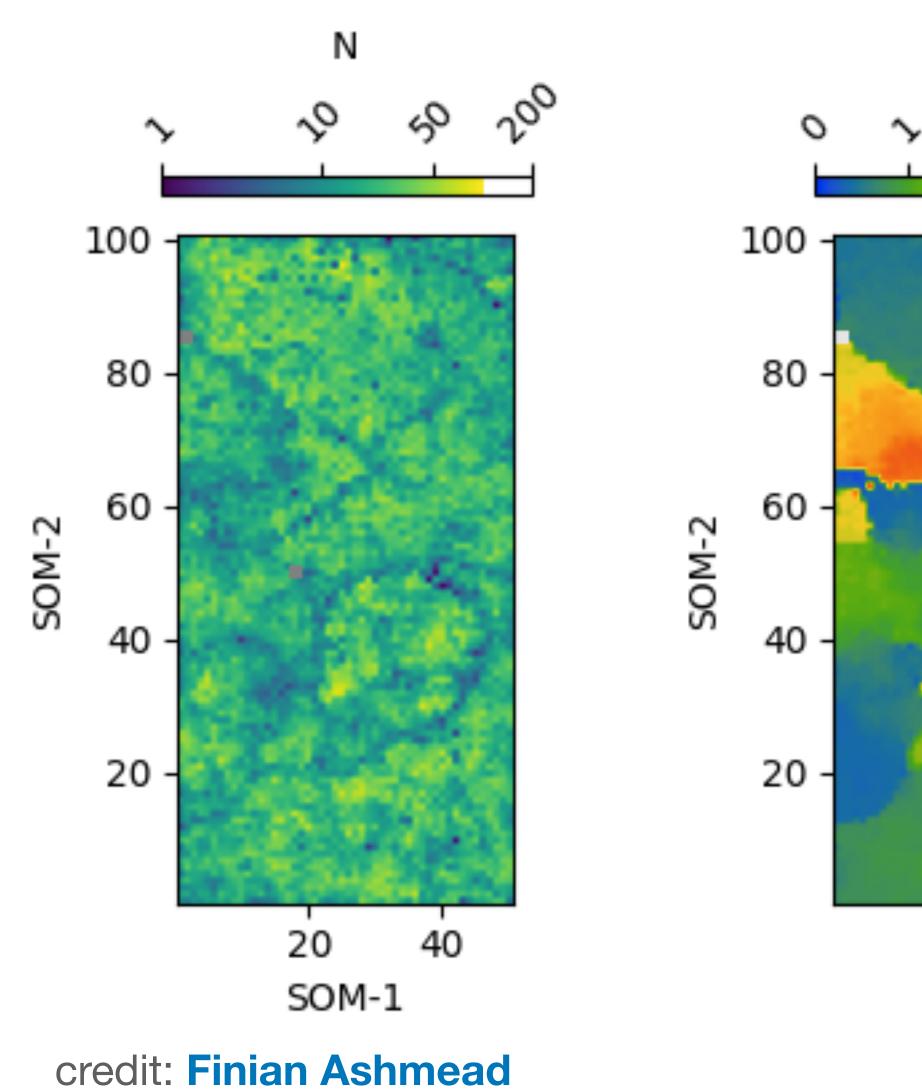
Color Axis 1

Newman & Gruen (2022)

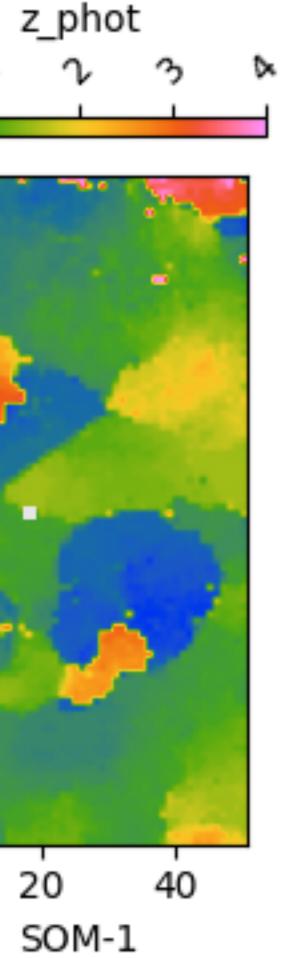
- - sparse sampling
 - incorrect redshifts
 - systematic incompleteness

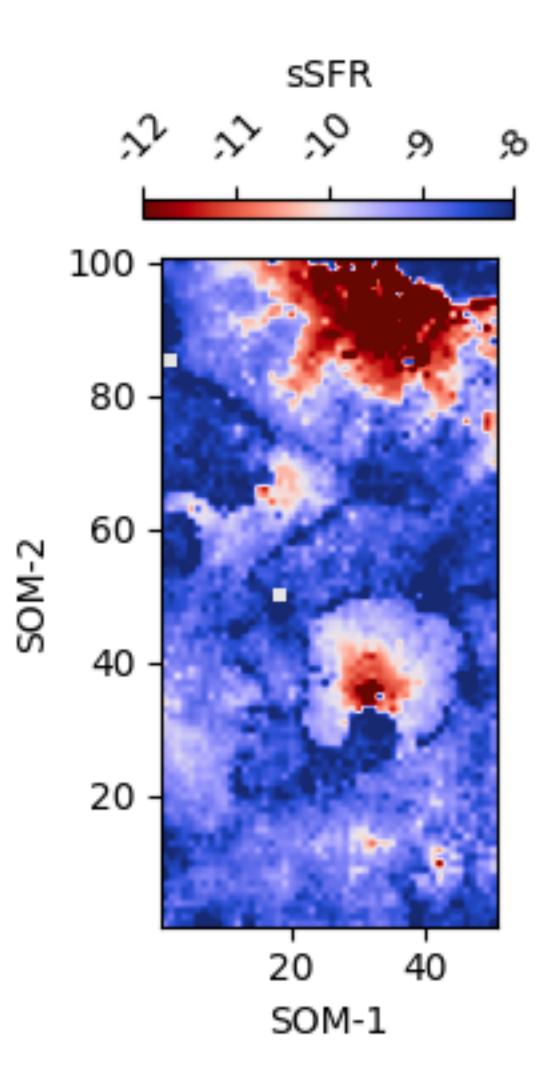
 Compared to photometric objects in color-redshift space, existing spec-z training sets suffer from

SOM: sharp boundaries and discrete binning hinder interpolation

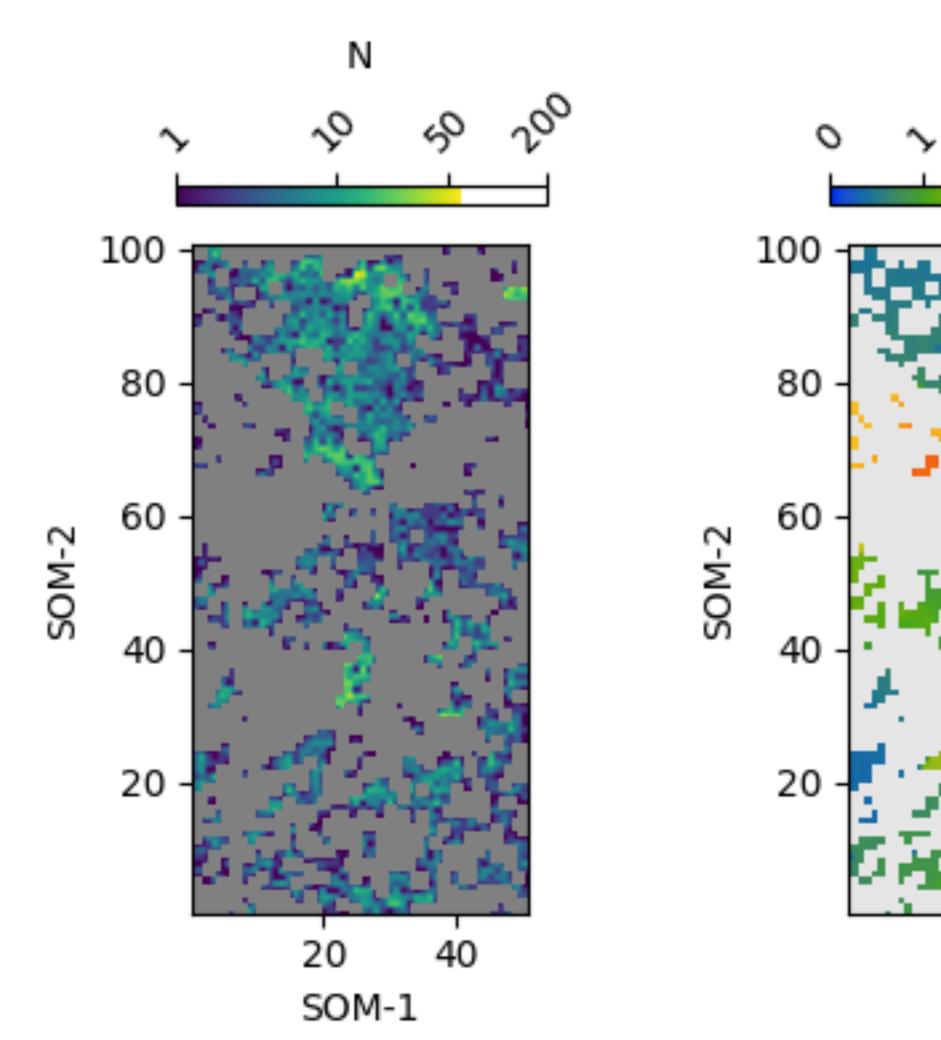


*u*grizyJHKs* data from Weaver et al. (2022)





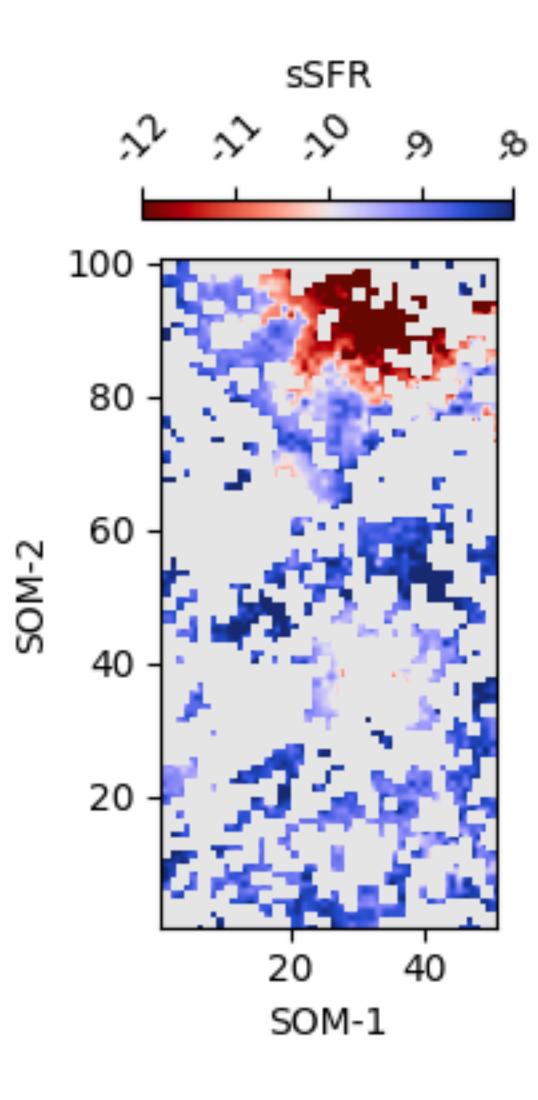
Spec-z's sparsely populate color-space and are systematically incomplete.



credit: Finian Ashmead

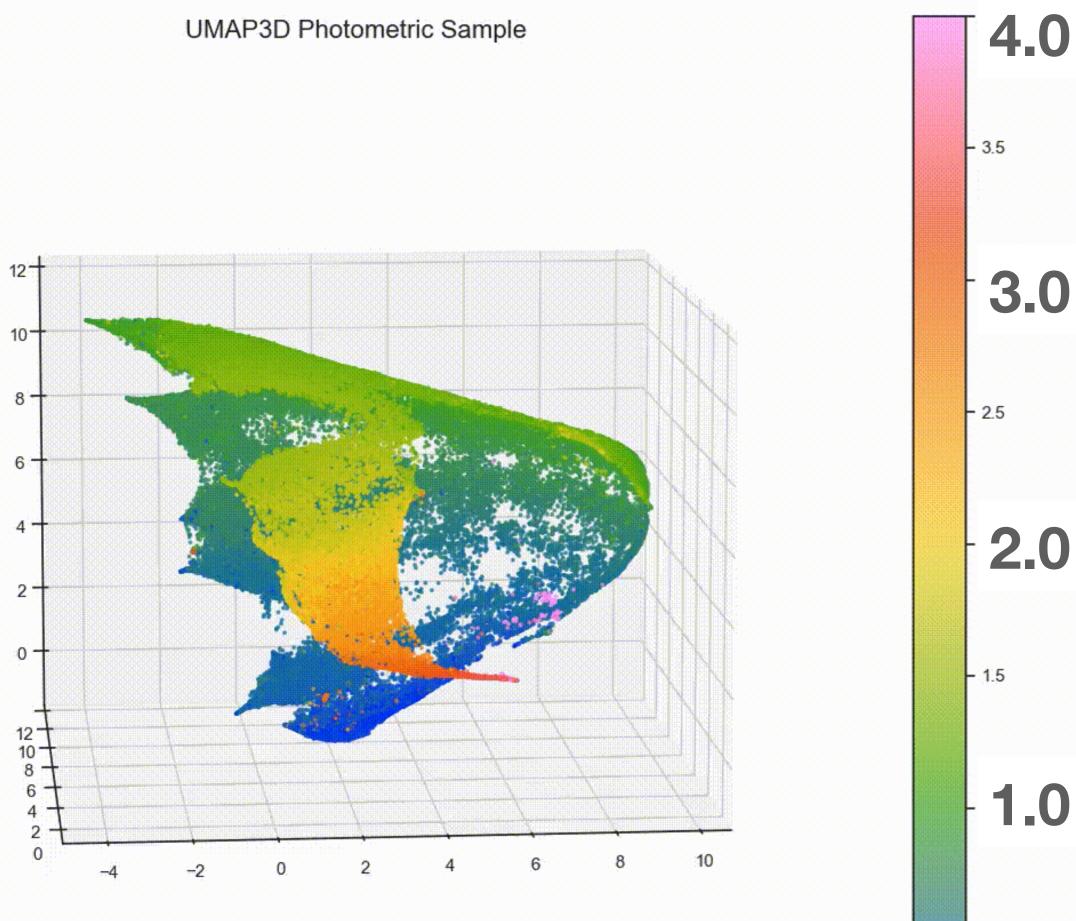
*u*grizyJHKs* data from Weaver et al. (2022) spec-z's (confidence > 95%) from Khostovan et al. (in prep.)





Roman WFS (PI: Newman): Optimizing Spec-z Training Sets w/ UMAP

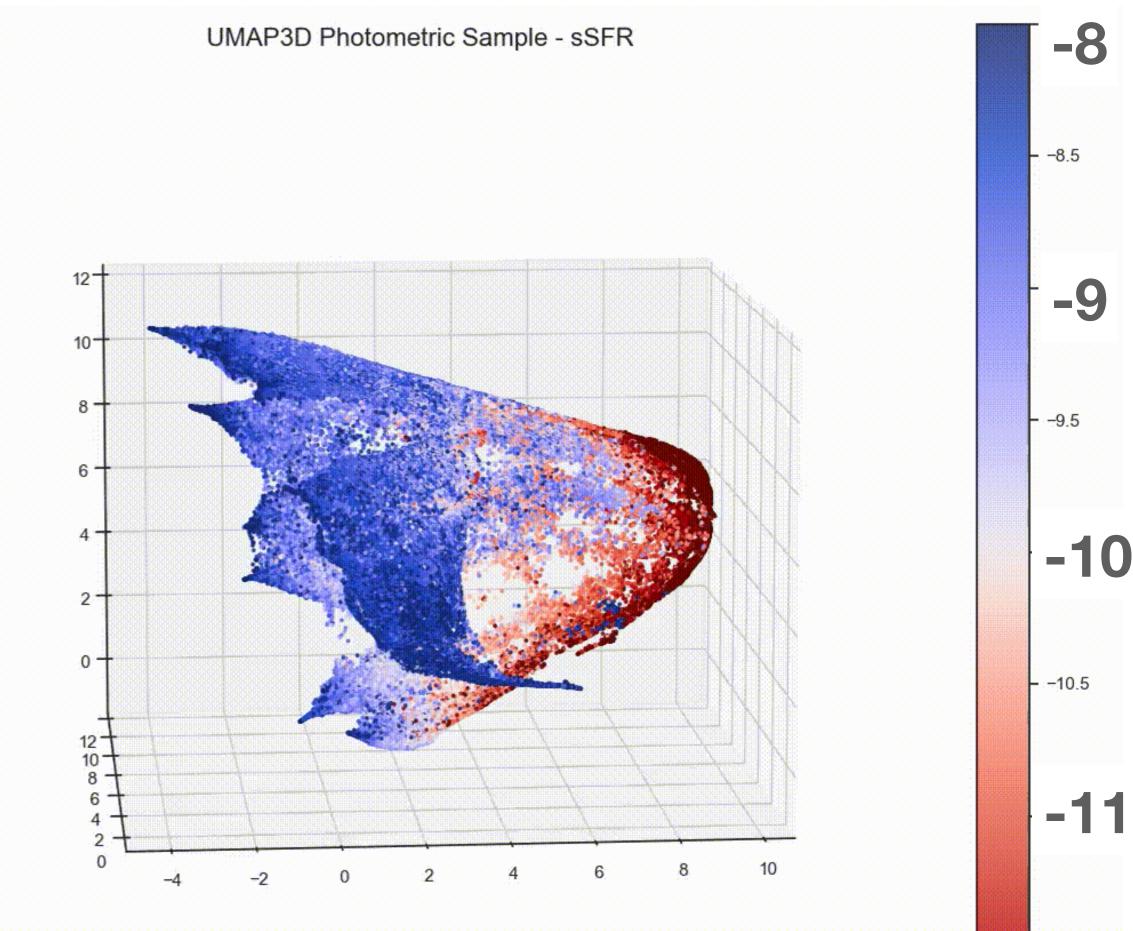
Photo-z



- 0.5

0

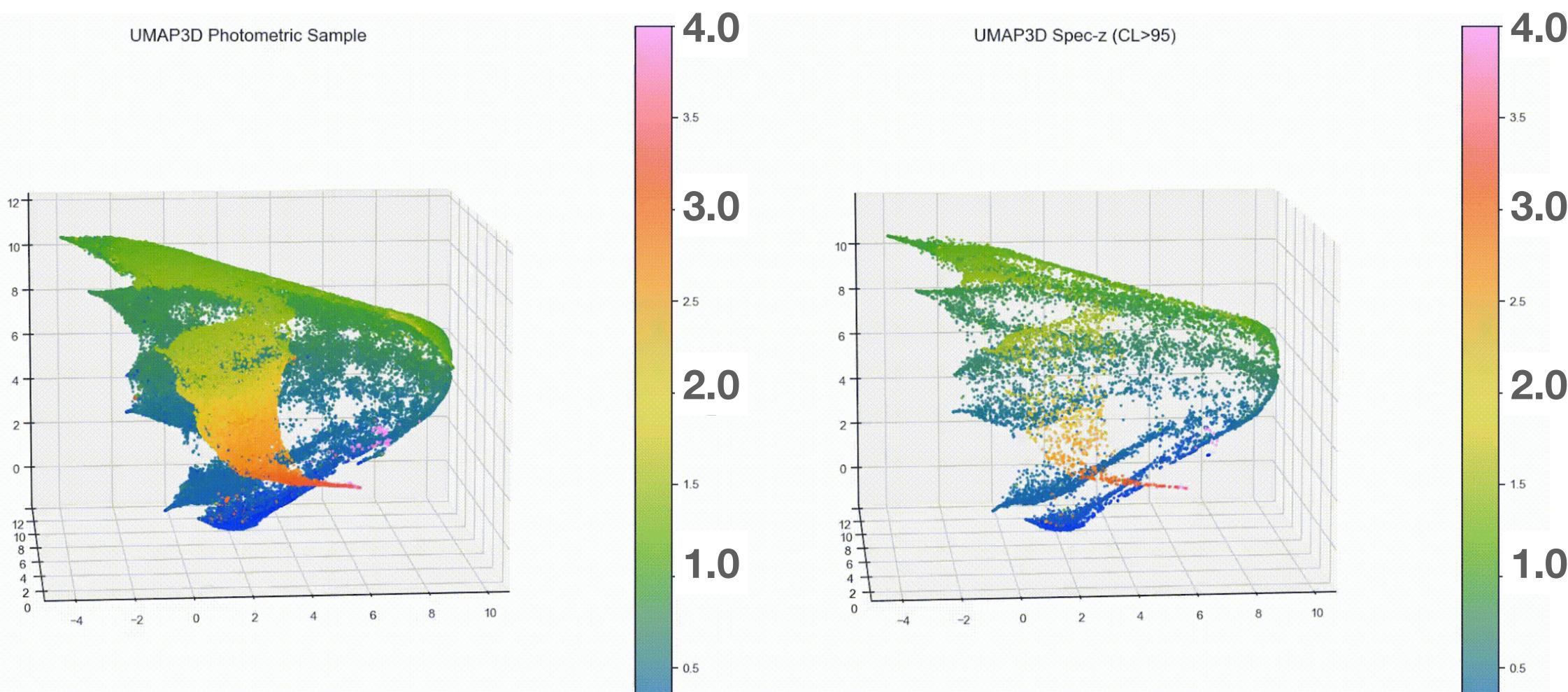
log(sSFR)



credit: Finian Ashmead

- -11.5

UMAP Color Manifold Enables Interpolation Photo-z



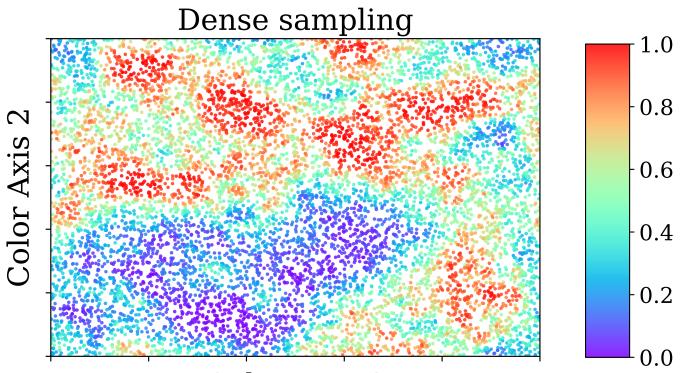
0

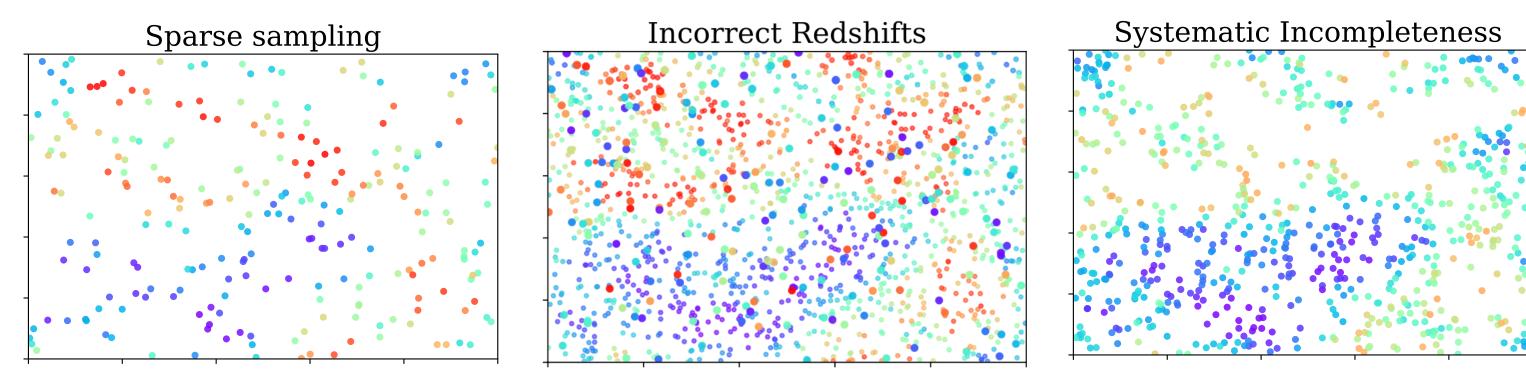
credit: Finian Ashmead

0

Photo-z Calibration Challenges

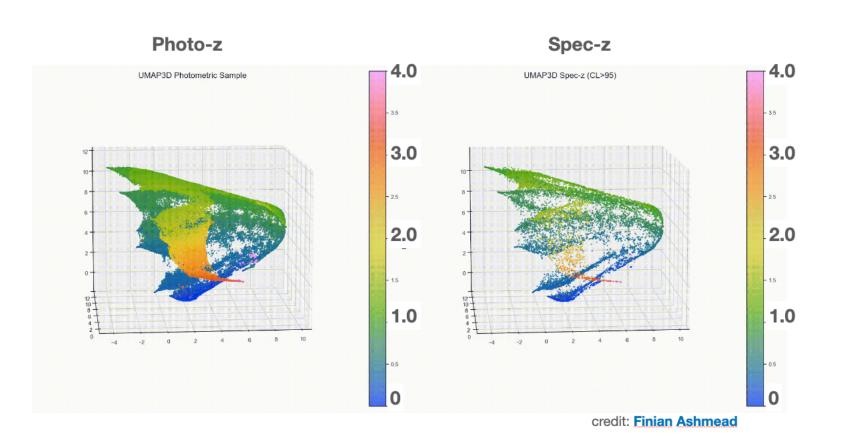
redshift





Color Axis 1

Newman & Gruen (2022)



- - incorrect spec-z's → robust methods
 - systematic incompleteness → rebalance training set to match photometric objects

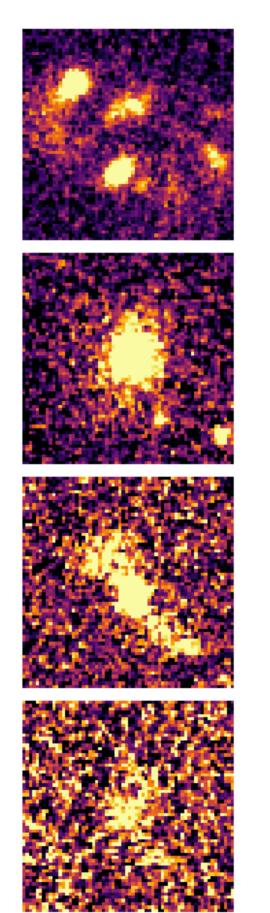
 Compared to photometric objects in color-redshift space, existing spec-z training sets suffer from

sparse sampling \rightarrow interpolation

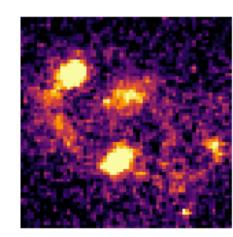
Roman WFS (PI: Andrews): Image-based Deep Learning Photo-z's

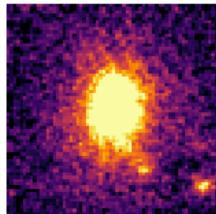
- Goal: leverage Roman's spatiallyresolved color information for better photo-z's.
- Prototyping on O(100k) 4 band HST CANDELS imaging out to H-band with O(20k) training redshifts.
- Currently achieving similar performance to classical ML methods and still room for algorithmic improvement.
- We expect our approach to scale much better than other methods given the massive size of the Roman dataset.

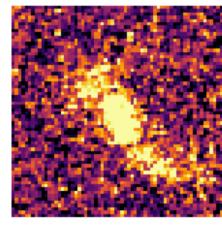
F606W

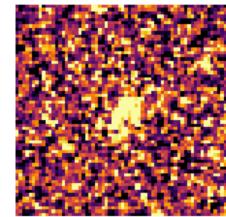


F814W

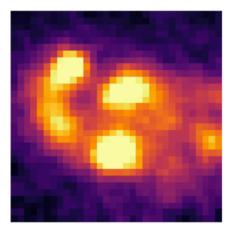


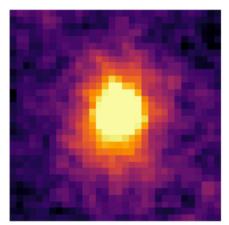


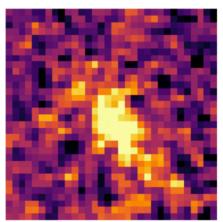


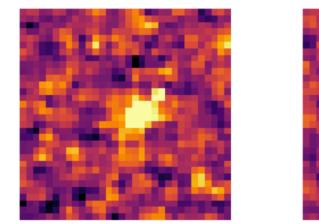


F125W

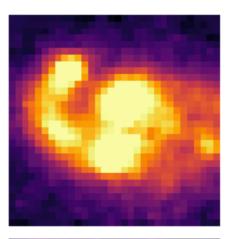


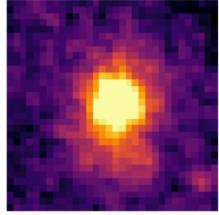


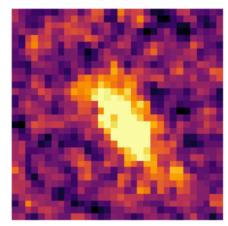


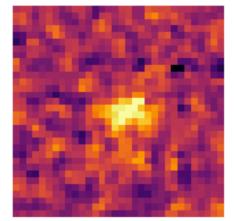


F160W









credit: Ashod Khederlarian

Clustering between photometric and spectroscopic samples can calibrate redshift distributions.

0.5

0.4

0.3

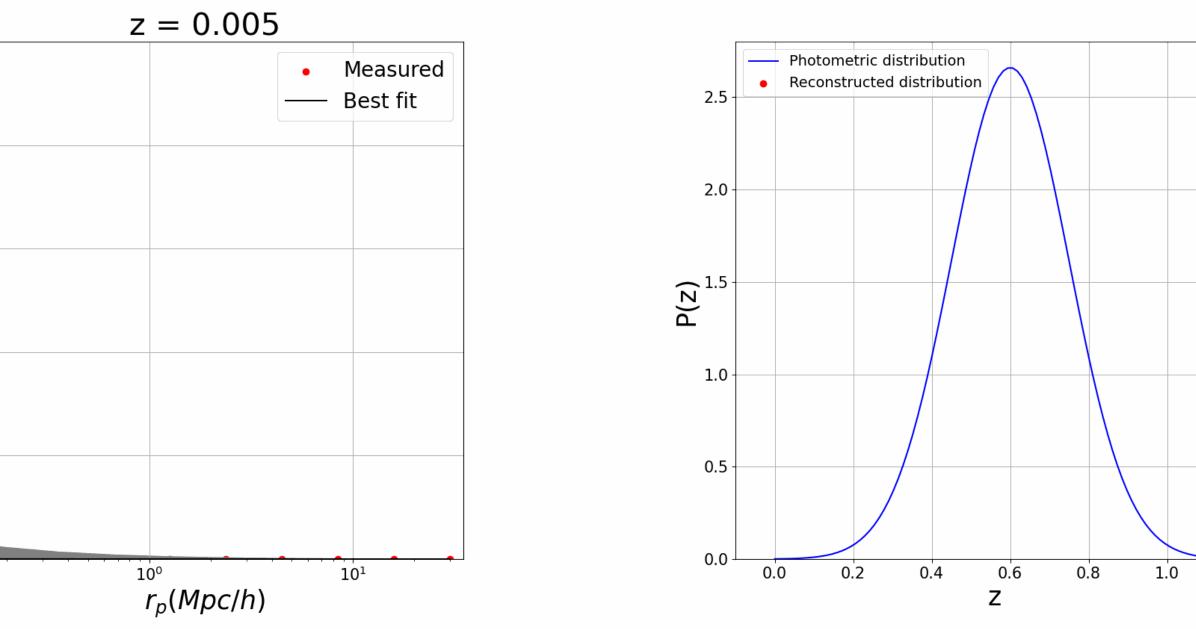
0.2

0.1

0.0 10⁻¹

ω_{sp}

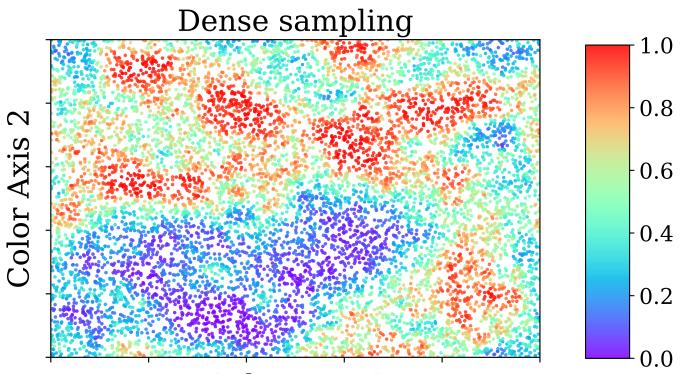
- Yoki Salcedo (Pitt) will work on adapting and testing RAIL framework for clustering redshifts (RAIL version of yetanother-wizz) for Roman.
- Clustering redshifts can test or improve calibration of redshift distributions.
- Also worked on DESI-2 target selection; DESI and DESI-2 will provide key samples for crosscorrelation



credit: Yoki Salcedo

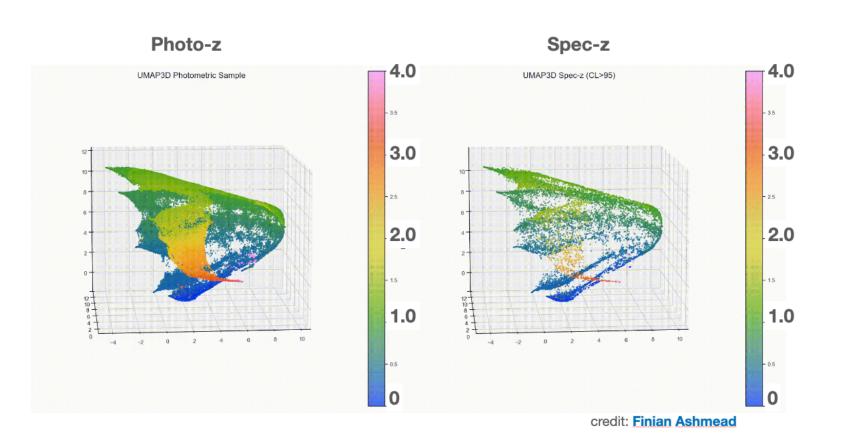
Photo-z Calibration Challenges

redshift

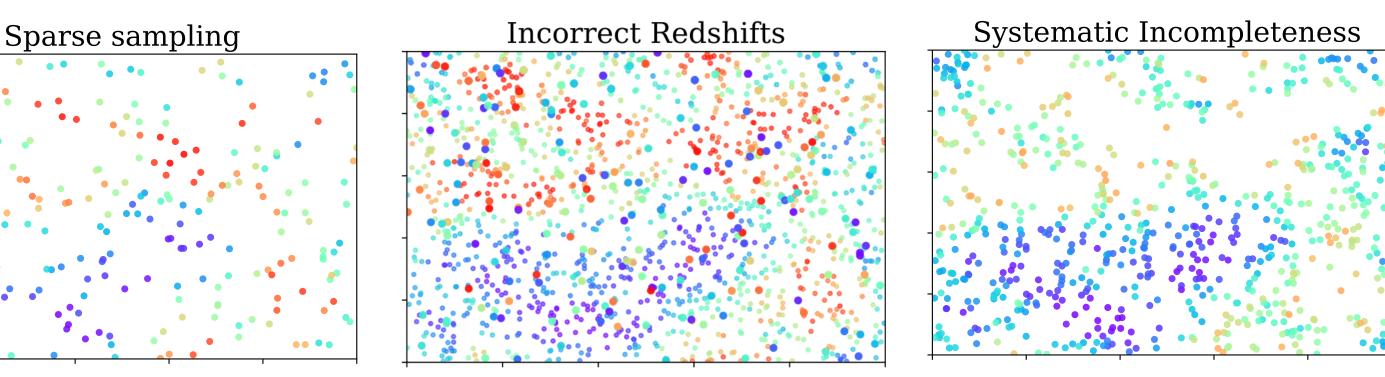




Newman & Gruen (2022)



- - incorrect spec-z's → robust methods
 - systematic incompleteness → rebalance training set to match photometric objects



 Compared to photometric objects in color-redshift space, existing spec-z training sets suffer from

sparse sampling \rightarrow interpolation

