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Template-based Photo-z’s



Next Generation Wide-Field Imaging Surveys: LSST + Roman

LSST-like

HST
Roman-like

Eifler et al. (2023)

Deep optical-NIR coverage of 109 (LSST) and 
108 (Roman) galaxies over 1000’s sq deg. 

Need redshifts for key LSST/Roman science 
drivers: cosmology, galaxy evolution, transients.



Spectroscopic Redshifts for LSST/Roman Prohibitively Costly

Spec-z’s down to LSST/Roman depths for 30,000 galaxies 
will require years of dark time on a 10-m class telescope        

(Newman et al. 2015).

Kodra et al. (2023)

Must Rely on Photometric Redshifts



Credit: Gabe Brammer



Estimate Photo-z's from Broad Spectral Features

Dunlop (2012)

esp. Lyman and Balmer/4000A breaks



Older Stellar Populations Have Stronger Breaks

given cosmic epoch, but also vary systematically with time (or
redshift). Along with allowing for multiple linear combinations
of individual templates, the template error function developed
here helps to account for these variations. The exact form of the
template error function depends on the chosen set of templates,
but it is computed in such a way that it generally applicable,
especially when no spectroscopic calibration sample is available.

The template error function is derived in the following way.
First, photometric redshifts are determined with a uniform tem-
plate error function (set at a constant 0.05mag; see, e.g., Rudnick
et al. 2001), for the photometric catalog of the GOODS-CDFS
field described byWuyts et al. (2008).We use the CDFS because
it provides the deepest survey with extensive multiwavelength
coverage that includes the NIR IRAC bands.4 Next, we calculate
the residuals from the best-fitting model spectra and de-redshift
them into the rest frame. These residuals are shown in the top
panel of Figure 3 (after several iterations). The binned median
absolute values of these residuals are shown by the solid symbols
in the bottom panel of Figure 3, along with a smoothly varying
function that is fit to the solid symbols (dashed line). Finally, the
template error function (solid line) is created by subtracting in
quadrature the (scaled) photometric errors (dot-dashed line) from
this smoothly varying function. The procedure is repeated until
convergence is reached.

The residuals in Figure 3 are only shown for bands with S/N >
10. To test whether the derived error function depends on the S/N
of the fluxmeasurements, we also compute the template error for
different limits 3 > S/N > 20. The sizes of the median residuals
and photometric errors decrease as the S/N limit increases, but
we find that the quadratic difference of the two remains mostly
unchanged. The shape of the template error function roughly fol-
lowswhat onemight expect following the considerations enumer-
ated above: the template error is lowest in the rest frame optical,
k ¼ 3500Y9000 8, where stellar isochrones are well-calibrated;
the template error is large in the UV where dust extinction is

strongest andmost variable; and the template error increases again
in theNIRwhere the stellar isochrones are uncertain (e.g.,Maraston
2005) and where thermal dust emission and stochastic PAH line
features begin to appear at k > 3 !m.

2.4. Bayesian Prior

The template-fitting method of estimating photometric
redshifts suffers from the fact that template colors are frequently
degenerate with redshift, such that the redshift probability distri-
butions can have multiple peaks over a broad range of redshifts.
For example, relatively featureless blue SEDs can often be fit
equally well at z ¼ 0 and z " 3 because the templates are unable
to distinguish blue colors redward of theBalmer andLyman breaks,
respectively. The degeneracies can sometimes be broken by adding
additional photometric bands (in the previous example, adding
IRAC photometry helps) or by incorporating statistical methods
to help choose between multiple probability peaks at different
redshifts.
Benı́tez (2000) was the first to develop a Bayesian approach

to estimating photometric redshifts that includes the use of a
Bayesian prior, which adds additional information besides the ob-
served photometric colors to help constrain the redshift estimates.
Following Benı́tez (2000), we adopt an apparent magnitude prior,
p(zjm0), which is the redshift distribution of galaxieswith apparent
magnitude, m0. This is essentially a ‘‘luminosity-function ;
volume’’ prior that assigns a low probability to very low redshifts
where the volume sampled is small and a similarly low probability
of finding extremely bright galaxies at high redshift. In contrast to
Benı́tez (2000), we do not include spectral (template) type in the
prior because (1) our derived templates do not directly correspond
to individual galaxy spectral types, (2) we fit linear combinations
of all five templates simultaneously, and (3) we do not want the
prior to impose any color restrictions as a function of redshift, the
last point being most important. For example, the prior used by
Benı́tez (2000) based on the HDF-N gives essentially zero prob-
ability to red E/S0 spectral types at z > 2, even though recent
work has shown that such galaxies are fairly common, at least in
NIR-selected samples (e.g., Kriek et al. 2006).
To determine the shape of the prior probability distribution,

p(zjm0), we again turn to the synthetic photometry of the SAM

Fig. 2.—Left: Five templates generated following the Blanton &Roweis (2007) algorithmwith PÉGASEmodels and a calibration set of synthetic photometry derived
from semianalytic models. Shown in gray is the additional young and dusty template added to compensate for the lack of extremely dusty galaxies in the SAMs. All of the
templates are shown normalized at 60008.Middle: ‘‘Default’’ template set of Blanton & Roweis (2007). Right: Empirical templates from Coleman et al. (1980) plus the
‘‘SB1’’ starburst spectrum from Kinney et al. (1996), which are frequently used for photometric redshifts. The templates shown are extended into the NUVand NIR with
Bruzual & Charlot (2003) models (dashed regions; see, e.g., Rudnick et al. 2001).

4 Since we wish to determine how well the PÉGASE template set matches
observed data, we cannot use the synthetic light cone photometry as that would
only illustrate differences between SEDs produced by the PÉGASE and Bruzual
& Charlot (2003) population synthesis codes.
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Brammer et al. (2008)

• Photo-z's are more precise for redder galaxies.

• At higher-z, blue galaxies with younger stellar populations 

dominate, so determining photo-z's is more difficult.

Youngest

Oldest



Photo-z Methods

• Train machine learning model on 
galaxies with photometry and 
spec-z’s.


• If training data is representative, 
then can be very accurate.


• However, extrapolate poorly 
outside of training data (and 
spec-z’s for faint galaxies are 
incredibly resource-intensive).

• Leverage knowledge of galaxy 
physics by finding best match of 
galaxy spectral template and 
redshift to the observed 
photometry.


• Much more reliable for regimes 
of color-redshift space sparsely 
covered by spec-z’s.


• But, spec-z’s are still needed 
to calibrate photometric and 
model uncertainties (e.g., 
template mismatch).

Data-Driven Template-based



Encoding Galaxy Physics: Spectral Templates

Brammer et al. (2008)

• Stellar Populations 
• Empirical vs. theoretical templates

• Combine templates?


• Gas/dust processing 
• Dust

• Emission lines

• IGM opacity


• Ideally, templates span the range of galaxy 
colors.

given cosmic epoch, but also vary systematically with time (or
redshift). Along with allowing for multiple linear combinations
of individual templates, the template error function developed
here helps to account for these variations. The exact form of the
template error function depends on the chosen set of templates,
but it is computed in such a way that it generally applicable,
especially when no spectroscopic calibration sample is available.

The template error function is derived in the following way.
First, photometric redshifts are determined with a uniform tem-
plate error function (set at a constant 0.05mag; see, e.g., Rudnick
et al. 2001), for the photometric catalog of the GOODS-CDFS
field described byWuyts et al. (2008).We use the CDFS because
it provides the deepest survey with extensive multiwavelength
coverage that includes the NIR IRAC bands.4 Next, we calculate
the residuals from the best-fitting model spectra and de-redshift
them into the rest frame. These residuals are shown in the top
panel of Figure 3 (after several iterations). The binned median
absolute values of these residuals are shown by the solid symbols
in the bottom panel of Figure 3, along with a smoothly varying
function that is fit to the solid symbols (dashed line). Finally, the
template error function (solid line) is created by subtracting in
quadrature the (scaled) photometric errors (dot-dashed line) from
this smoothly varying function. The procedure is repeated until
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The residuals in Figure 3 are only shown for bands with S/N >
10. To test whether the derived error function depends on the S/N
of the fluxmeasurements, we also compute the template error for
different limits 3 > S/N > 20. The sizes of the median residuals
and photometric errors decrease as the S/N limit increases, but
we find that the quadratic difference of the two remains mostly
unchanged. The shape of the template error function roughly fol-
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k ¼ 3500Y9000 8, where stellar isochrones are well-calibrated;
the template error is large in the UV where dust extinction is

strongest andmost variable; and the template error increases again
in theNIRwhere the stellar isochrones are uncertain (e.g.,Maraston
2005) and where thermal dust emission and stochastic PAH line
features begin to appear at k > 3 !m.

2.4. Bayesian Prior

The template-fitting method of estimating photometric
redshifts suffers from the fact that template colors are frequently
degenerate with redshift, such that the redshift probability distri-
butions can have multiple peaks over a broad range of redshifts.
For example, relatively featureless blue SEDs can often be fit
equally well at z ¼ 0 and z " 3 because the templates are unable
to distinguish blue colors redward of theBalmer andLyman breaks,
respectively. The degeneracies can sometimes be broken by adding
additional photometric bands (in the previous example, adding
IRAC photometry helps) or by incorporating statistical methods
to help choose between multiple probability peaks at different
redshifts.
Benı́tez (2000) was the first to develop a Bayesian approach

to estimating photometric redshifts that includes the use of a
Bayesian prior, which adds additional information besides the ob-
served photometric colors to help constrain the redshift estimates.
Following Benı́tez (2000), we adopt an apparent magnitude prior,
p(zjm0), which is the redshift distribution of galaxieswith apparent
magnitude, m0. This is essentially a ‘‘luminosity-function ;
volume’’ prior that assigns a low probability to very low redshifts
where the volume sampled is small and a similarly low probability
of finding extremely bright galaxies at high redshift. In contrast to
Benı́tez (2000), we do not include spectral (template) type in the
prior because (1) our derived templates do not directly correspond
to individual galaxy spectral types, (2) we fit linear combinations
of all five templates simultaneously, and (3) we do not want the
prior to impose any color restrictions as a function of redshift, the
last point being most important. For example, the prior used by
Benı́tez (2000) based on the HDF-N gives essentially zero prob-
ability to red E/S0 spectral types at z > 2, even though recent
work has shown that such galaxies are fairly common, at least in
NIR-selected samples (e.g., Kriek et al. 2006).
To determine the shape of the prior probability distribution,

p(zjm0), we again turn to the synthetic photometry of the SAM

Fig. 2.—Left: Five templates generated following the Blanton &Roweis (2007) algorithmwith PÉGASEmodels and a calibration set of synthetic photometry derived
from semianalytic models. Shown in gray is the additional young and dusty template added to compensate for the lack of extremely dusty galaxies in the SAMs. All of the
templates are shown normalized at 60008.Middle: ‘‘Default’’ template set of Blanton & Roweis (2007). Right: Empirical templates from Coleman et al. (1980) plus the
‘‘SB1’’ starburst spectrum from Kinney et al. (1996), which are frequently used for photometric redshifts. The templates shown are extended into the NUVand NIR with
Bruzual & Charlot (2003) models (dashed regions; see, e.g., Rudnick et al. 2001).

4 Since we wish to determine how well the PÉGASE template set matches
observed data, we cannot use the synthetic light cone photometry as that would
only illustrate differences between SEDs produced by the PÉGASE and Bruzual
& Charlot (2003) population synthesis codes.
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Likelihood

Benitez (2000)

p(colors | z, templates) = exp(-𝜒2(z) / 2)

Brammer et al. (2008)

Observed Flux (in filter j)

Observed Flux Error (in filter j)

Template Flux (at redshift z for template i in filter j)

Sum over filters

𝜒2-minimization: finding the best fit template and redshift

Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)



Likelihood

Benitez (2000)

p(colors | z, templates) = exp(-𝜒2(z) / 2)

Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)

Templates and/or photometric errors are often tweaked to account for:


• observational uncertainties in

• filter transmission curves 

• photometric zero points


• theoretical uncertainties in

• mismatch between spectral templates and real galaxy spectra.


Requires spec-z data sets!



Benitez (2000)

Prior p(z, templates | m0)

p(colors | z, templates) = exp(-𝜒2(z) / 2)Likelihood

Brighter galaxies 
are more likely to 
live at low-z.

apparent magnitude

Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)



Benitez (2000)

Prior p(z, templates | m0)

p(colors | z, templates) = exp(-𝜒2(z) / 2)Likelihood

Even with the same photo-z 
code running on the same 
input photometry for bright 
galaxies, different priors 
can produce different 
photo-z posterior PDFs.

apparent magnitude

Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)

Credit: Dritan Kodra

EAZY EAZYzphot LePhare WikZ

H-band magnitude

Stacked Photo-z Posterior PDFs in 
CANDELS EGS



Benitez (2000)

Prior p(z, templates | m0)

p(colors | z, templates) = exp(-𝜒2(z) / 2)Likelihood

Different codes disagree 
on the redshift of large 
scale structure due to 
implicit priors baked into 
the codes/template sets.

apparent magnitude

Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)

Credit: Dritan Kodra

EAZY EAZYzphot LePhare WikZ

H-band magnitude

Stacked Photo-z Posterior PDFs in 
CANDELS EGS



Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)

Likelihood

Prior

Posterior

p(colors | z, templates) = exp(-𝜒2(z) / 2)
Benitez (2000)

p(z, templates | m0)

Degenerate SED

p(z | colors, m0) ∝ p(colors | z) * p(z | m0)



Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)

Likelihood

Prior

Posterior

p(colors | z, templates) = exp(-𝜒2(z) / 2)
Benitez (2000)

p(z, templates | m0)

Lyman break

@ zphot = 2.85

Balmer break

@ zphot = 0.24

zspec = 0.33

Roman NIR bands will be key for 
breaking degeneracies in optical SEDs

Ilbert et al. (2006)
Degenerate SED



Bayesian Framework: Photo-z Probability Distribution Functions (PDFs)

Likelihood

Prior

Posterior

Benitez (2000)

Posterior PDFs are often 
biased or underdispersed 

⇩ 
Need spectroscopic data for 

calibration!

Dey et al. (2022)



Takeaways
• Need photo-z's for LSST/Roman science.


• Template-based photo-z methods are especially useful for regimes 
of color-redshift space with sparse spectroscopic coverage.


• Use 𝜒2-minimization to find best match of redshift+template to 
observed photometry.


• But many choices (template sets, dust, emission lines), so need 
spectroscopic data for calibration!



