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Type la Supernovae: Measuring the
Accelerating Expansion of the Universe

* Accelerating expansion of the Universe

» thought to be driven by dark energy
* Nobel Prize in Physics 2011

 standardize brightness - measure distances

Image: nobelprize.org

* Thermonuclear explosion of a white dwarf star.
« White Dwarf: old, compact star as massive as Sun but size of Earth.

* Normally stable but adding mass past a critical threshold makes them
explode.
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What is the companion star?

a) another white dwarf
b) a normal star

 Limits distance accuracy.
* Might introduce systematic biases.

* The stellar population age can help
disentangle these two scenarios.

Images: Wikimedia Commons and Discover Magazine
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Supernova Host Galaxy Spectroscopy

* Find supernovae in imaging and do resource intensive
spatially-resolved spectroscopy of the host galaxy.

» Have a large data set of spatially-resolved spectroscopy of
galaxies then look for supernovae (known or unknown).
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SDSS-IV MaNGA Survey
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Galaxy Spectra
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A Serendipitous Supernova

No supernova in image
used to select galaxies.
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Finding Supernovae: Anomaly Detection

» Data set is too big to apply anomaly detection.

2,600 galaxies * 3,000 spatial elements * 4,000 spectral channels
~ 30,000,000,000 elements

1. Reduce dimensionality with Convolutional Autoencoder.
2. Apply anomaly detection techniques.
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Convolutional Autoencoder (CAE)

* Deep dimensionality reduction technique using a Convolutional
Neural Network (unsupervised).

Input image Reconstructed image

Latent Space Py
"~._ Representation P

Encoder Bottleneck Decoder image: S. Slngh
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What is convolution?

Convolution Transpose
Convolution

Animations: Dumoulin & Visin (2016)
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CAE Architectures

« 2D CAE

 standard for RGB images

« 3D CAE

» kernel is 3x3x3 cube; take advantage of spectral correlations
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Example Architecture (2D CAE)
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Reconstruction: Image Slice
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Reconstruction: Spectral Slice
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Anomaly Detection on Low-D Encoding

* Applied multiple anomaly detection methods, including isomap
and k nearest neighbors.

* Could not recover our supernova example.
* But detected more extreme outliers:

foreground Milky Way star blazar (beamed black hole accretion)

Brett Andrews Finding Supernovae with Deep Learning 17



Looking Ahead

» Supernova features are subtle.

* Need to improve reconstruction of sharp features.
* incorporate signal-to-noise ratio
* more galaxies (4x more will be available)

« Supernovae are only one science driver for anomaly detection.

 Other rare, interesting, and potentially unknown phenomenon
could be discovered.
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