
GitHub Flow
Brett Andrews

3.27.2018

Bad things happen.

2

• Sometimes the Universe is conspiring against you.
• Sometimes your collaborators are conspiring

against you.
• Most likely, you're conspiring against you.

Protect your work from yourself.

3

Turn a project (in a local directory) into a git
repository (repo):

git init

Add files and commit:
git add main.py
git commit -m "Fixes critical bug"

Protect your work from "water" spills.

4

Setup remote repo on GitHub:

Protect your work from "water" spills.

5

Connect local and remote repos:
git remote add origin <server>
for me: <server> = git@github.com:bretthandrews/github-flow.git

Push to remote repo:
git push –u origin master

Protect your work from collaborators*

6

*including past-you and future-you.

• Work in branches
• Submit Pull Requests
• Merge branch into the master branch

Protect your work from collaborators

7

For now, let's assume that you are a collaborator on
the project (i.e., have push-access).

git clone git@github.com:sdss/marvin.git

GitHub Flow by Scott Chacon

8

1. The master branch always works.
2. Create a descriptively-named branch for each

new feature.
3. Commit locally and regularly push to the same

named branch on GitHub.
4. Submit Pull Requests for feedback, help, and

merging.
5. Only merge into master after someone signs off

on your changes.

master Always Works

9

• Imperative if you are actively serving a web site.
• Even if not, always want a stable version of code.
• Start new branches from master.
• You need to run the last working version of the code.

• Bottom line: don't actively develop in master.

New Feature New Branch

10

• One new feature per branch.
• Use descriptive names (future-you will thank you).

Create a new local branch:
git checkout –b github-flow

Image credit: http://rogerdudler.github.io/git-guide/

New Feature New Branch

11

Sync w/remote branch of same name.
git push origin github-flow

Nomenclature note:
• origin = my remote GitHub repo
• upstream = shared remote GitHub repo.

Commit and Push Frequently

12

• Make frequent commits.
• One idea or complete change per commit.

• Regularly push to remote branch (but pull first to
incorporate changes):
git pull origin feature-x
git push origin feature-x

Pull Requests: Code Review

13

• When you're done or stuck, submit a Pull Request
to your collaborators.

• Opportunity for you to review and communicate
the changes that you made.

• Receive feedback and help from collaborators.
• Incorporate feedback.
• After the Pull Request gets approved, then merge

your branch into master.

Create a Pull Request

14

Create a Pull Request

15

Pull Requests: Commit Log

16

Still	need	to	
merge	master
into	feedback

Pull Requests: Code Changes

17

Pull Requests: Communication

18

Describe	your	changes

GitHub Issues

19

• Communicate ideas (including to future-you)
• Assign tasks
• Prioritize

GitHub Issues

20

Forking: Concept

21Image credit: https://stackoverflow.com/questions/3611256/forking-vs-branching-in-github

fork

clone
add	remote

You want to contribute to a project...but you aren't a
collaborator, so you can't push to it.

Forking: How To

22

git clone git@github.com:bretthandrews/Hack-Hour.git

git remote add upstream git@github.com:astropgh/Hack-Hour.git

Forking: Contributing

23

• Pull from the original repo (upstream) and merge
any changes.

git pull upstream github-flow

• Submit a Pull Request

• The owner of the upstream repo will review and
possibly merge in your contributions.

Summary

24

• Don't actively develop on master.
• Make changes to master by merging approved

Pull Requests.
• Make Pull Requests to ask for feedback on or

review of a branch.
• Each branch corresponds to one new feature.
• Each commit corresponds to one complete

change.

