The SDSS-IV MaNGA Survey: Galaxy Dissection on an Industrial Scale

Brett Andrews

CMU AstroLunch 9.15.2017

Previous SDSS Surveys

MaNGA

Credit: Mike Blanton

MaNGA Science Drivers

- 1. How does gas accretion drive growth?
- 2. How do mergers, stellar accretion, and instabilities build spheroidals?
- 3. What quenches star formation? Does is it depend on environment?
- 4. How is angular momentum distributed and transferred during formation?
- 5. How do various mass components assemble and influence one another?

MaNGA Overview

- MaNGA: Mapping Nearby Galaxies at Apache Point
 Observatory
- One of three main sub-surveys of SDSS-IV (2014-2020)
- PI: Kevin Bundy. Over 160 members at 50+ institutions.
- Integral Field Unit (IFU) observations of 10,000 nearby galaxies
- z = 0.01 0.15
- λ ~ 3,600 10,300 Å
- *R* ~ 1400 2600 (115 215 km/s)
- Spatial resolution: 1.3 5.1 kpc

IFU Sizes

Credit: Kevin Bundy

Dithering

Law et al. (2015)

MaNGA Sample Design

- $M_{\star} > 10^9 M_{\odot}$
- Flat distribution in M_{\star}
- Two main subsamples:
 1.5 and 2.5 R_{effective}

Ancillary programs:
 – 5-10% of bundles

Milky Way Analogs

Jeff Newman, Cat Fielder, Tim Licquia, BHA, Matt Bershady, Jon Bird, Karen Masters

- 1. M_{\star} and star formation rate
- 2. M_{*} and bulge-to-total mass ratio
- Measure global properties of MW (e.g., color and luminosity)
- How typical is the MW?
- Ancillary Data (HI)

Licquia, Newman, & Brinchmann (2015)

MaNGA Fields

Yan et al. (2015)

IFU Survey Comparison

Survey	Year(s)	Galaxies	Science Focus
DiskMass	2001-2005	192	kinematics
ATLAS-3D	2011	260	kinematics
CALIFA	2010-2016	667	kin., em. lines, stellar pops
SAMI	2013-2016	3,400	kin., em. lines, stellar pops
MaNGA	2014-2020	10,000	kin., em. lines, stellar pops

IFU Survey Comparison

étendue: a measure of how quickly one can map the sky to a given S/N at a given spectral resolution.

étendue = collecting area ×
 solid angle covered by fibers ×
 efficiency

éntendue × *R* (resolving power): metric of simultaneous survey information gathering power.

Bundy et al. (2015)

Galaxies Unique

alaxies C Unique

alaxies C Unique

MaNGA Data Reduction

Row-Stacked Spectra (spectrum from each fiber at each dither position)

Law et al. (2015)

Credit: Stephen Todd (ROE) & Douglas Pierce-Price (JAC)

Cubes

MaNGA Data Analysis

- 1. Fit stellar continuum
- 2. Fit emission lines
- 3. Measure spectral indices

Westfall et al. (in prep.)

MaNGA Analysis Products

Model Cubes

Maps

Analysis Properties

- Kinematics (stellar & gas)

 velocity & sigma
- Emission line fluxes

 Hα–Hε, Hel, Hell, [OI],
 [OII], [OIII], [NII], [SII], [SII]
- Spectral Indices

 D4000

NRE (0–1 and 1–2 $R_{\rm eff}$) ALL (global)

SPX (unbinned)

Bin Types

VOR10 (Voronoi binning to S/N = 10)

MaNGA Early Science Results

- Already 35 accepted publications
- Abundances (Belfiore)
- Mass-Metallicity[-SFR] Relation (Barrera-Ballesteros, Zhu)
- DIG (Zhang, Belfiore)
- Extraplanar DIG (Jones)
- AGN identification (Wylezalek)
- Red Geysers (Cheung)
- Quenching in dwarf galaxies (Penny)
- SFH and stellar pop gradients (Goddard)

Early Science: Oxygen and Nitrogen Abundance Gradients

Early Science: Oxygen and Nitrogen Abundance Gradients

Early Science: Oxygen and Nitrogen Abundance Gradients

- Spatially resolved regions follow unresolved N/O—O/H relation...
- ...but outer regions of massive disks have higher N/O than inner regions of low mass disks (at fixed O/H).
- Different SFE?
- Wind recycling?

Belfiore et al. (2017)

Early Science: Spectral Bulge – Disk Decomposition

Construct bulge and disc spectra and datacubes

Johnston et al. (2017)

Early Science: Spectral Bulge—Disk Decomposition

MaNGA Total Data Volume

At the end of the survey (rough numbers):

- 10,000 gal × 3,000 spax/gal
 = 30 million spaxels
- 3e7 spax × 100 analysis prop./spax
 = 3 billion analysis properties
- 3e7 spax × 10,000 spectral elements/spax
 = 300 billion spectral elements

Marvin

Ecosystem for MaNGA

- data access
- exploration
- visualization
- analysis

Brett Andrews Lead Developer

José Sánchez-Gallego Lead Developer

Joel Brownstein Lead Developer

y 0

Marvin Demo

#whatcouldgowrong

Point-and-click Maps

Galaxy Properties

Queries

Guided Query Builder (demo) drag me

ONOT AND OR ∞Invert			+ Add	rule O Add group
nsa.z	 less or equal 	• 0.02	٢	× Delete
spaxelprop.emline_gflux_ha_6564	▼ greater or equal	• 25	٢	× Delete
nsa.sersic_logmass	- less or equal	- 9.5	٢	× Delete

nsa.z <= 0.02 AND spaxelprop.emline_gflux_ha_6564 >= 25 AND nsa.sersic_logmass <= 9.5 ×

Queries

			- 1
			-

cube.mangaid	cube.plate	cube.plateifu	🔶 ifu.name	nsa.sersic_logmass	spaxelprop.emline_gflux_ha_6564	nsa.z	spaxelprop.x	spaxelprop.y	bintype.name	template.name
<u>1-113698</u>	8618	8618-1901	1901	8.72179330901551	64648.578125	0.0167445	10	25	SPX	GAU-MILESHC
1-134004	8486	8486-1901	1901	9.23737531584658	25.2606716156	0.0185601	18	17	SPX	GAU-MILESHC
<u>1-134004</u>	8486	<u>8486-1901</u>	1901	9.23737531584658	25.9463405609	0.0185601	17	18	SPX	GAU-MILESHC
<u>1-134004</u>	8486	<u>8486-1901</u>	1901	9.23737531584658	27.0823745728	0.0185601	17	17	VOR10	GAU-MILESHC
<u>1-134004</u>	8486	<u>8486-1901</u>	1901	9.23737531584658	25.9476146698	0.0185601	17	18	VOR10	GAU-MILESHC
<u>1-134004</u>	8486	<u>8486-1901</u>	1901	9.23737531584658	25.2623615265	0.0185601	18	17	VOR10	GAU-MILESHC
<u>1-134004</u>	8486	<u>8486-1901</u>	1901	9.23737531584658	27.0845966339	0.0185601	17	17	SPX	GAU-MILESHC
<u>1-137912</u>	8250	8250-12703	12703	9.10949417692221	1111.30187988	0.014213	51	26	SPX	GAU-MILESHC
<u>1-145894</u>	8147	<u>8147-9102</u>	9102	8.85028897447965	3062.51074219	0.0152357	6	28	SPX	GAU-MILESHC
<u>1-147394</u>	8250	8250-12705	12705	8.82383403586861	25.430606842	0.0160493	25	47	SPX	GAU-MILESHC
Showing 1 to 10 of 4550 rows 10, rows per page										

nsa.z <= 0.02 AND spaxelprop.emline_gflux_ha_6564 >= 25 AND nsa.sersic_logmass <= 9.5

From Exploration to Analysis

- Marvin python package powers Marvin web app
- pip install sdss-marvin
- code snippets in web
- Multi-modal access

Convenience Functions

- Everyone has the same problems.
- Solve them once. Solve them correctly.

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

	50/ _{DAY}	5/DAY	DAILY	WEEKLY	MONTHLY	YEARLY
1 SECOND	1 DAY	2 HOURS	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
5 SECONDS	5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS
30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES
HOW 1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
TIME 5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
OFF 30 MINUTES		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 HOURS
1 HOUR		10 months	2 MONTHS	10 DAYS	2 DAYS	5 HOURS
6 HOURS				2 MONTHS	2 WEEKS	1 DAY
1 DAY					8 WEEKS	5 DAYS

Convenience Functions

- Map Arithmetic (+, -, ×, ÷, ^)
 handle error propagation and mask
 - nancie error propagation and mask combination
- Correction Functions
 - correct velocity dispersions for the instrumental resolution

BPT Diagram

Baldwin, Phillips, & Terlevich (1981)

mglearn: Deep Learning MaNGA

- Marvin enables human exploration/ analysis
- mglearn enables machine exploration/ analysis
- Barnabas Poczos, Siamak Ravanbakhsh, Eric Ma, Ananth Tenneti, BHA, Jeff Newman, Brian Cherinka, Jose Sánchez-Gállego, Joel Brownstein

mglearn: Deep Learning MaNGA

- 1. Exploratory analysis
 - clustering & visualization of cubes
- 2. Anomaly Detection
 - density estimation of cubes
- 3. Super-Resolution

- increase effective spatial resolution of maps

Take Aways

- MaNGA: statistically powerful spatially-resolved galaxy survey
 - 2700 galaxies now
 - 4750 galaxies soon
- Marvin
 - Web: <u>sas.sdss.org/marvin</u>
 - Tools: pip install sdss-marvin
- mglearn: clustering, anomaly detection, and super-resolution using deep learning

MaNGA overview

Dithering

Law et al. (2015)

MaNGA overview

Dithering

Kevin ≠ Marilyn

David R. Law CDR May 2013

MPL-6

- ~4750 galaxies
- Extensive testing of the stellar kinematics
- Improved emission-line fitting

 tied kinematics and tied fluxes of doublets
- Hybrid binning scheme

 S/N > 10 for stellar kinematics and individual
 - spaxels for emission lines
- Extended set of spectral index measurements

MaNGA overview

MaNGA vs the World

		COMPARISO	N OF II C BERKETS			
Specification MaNGA		SAMI	CALIFA	$\begin{array}{c} \text{DiskMass} \\ (\text{H}\alpha) \end{array}$	DiskMass (stellar)	ATLAS ^{3D}
Sample size	10,000	3,400	600	146	46	260
Selection	$M_* > 10^9 {\rm M}_\odot$	$M_* > 10^{8.2} \mathrm{M}_\odot$	$45^{\prime\prime} < D_{25} < 80^{\prime\prime}$	S/SAab-cd 10'' <h< td=""><td>, b/a>0.75 _R<$20''$</td><td>$M_* \gtrsim 10^{9.8} M_{\odot}^{e} E/S0$</td></h<>	, b/a> 0.75 _R < $20''$	$M_* \gtrsim 10^{9.8} M_{\odot}^{e} E/S0$
Redshift	0.01 - 0.15	0.004-0.095	0.005 - 0.03	0.001 - 0.047	0.003 - 0.042	$z \lesssim 0.01$
Radial coverage	${1.5 \ R_{ m e}({ m P+}) \over 2.5 \ R_{ m e}({ m S})}$	1.1–2.9 $R_{\rm e}$	1.8–3.7 $R_{\rm e}$	1.4–3 $R_{\rm e}$	1.1–2.3 $R_{\rm e}$	0.6–1.5 $R_{\rm e}$
S/N^a at $1R_e$ (per spatial sample)	14-35	12-28	10-50	6	9–16	15
λ range (nm)	360-1030	370-570 (580V) 625-735 (1000R)	375–750 (V500) 370–475 (V1200)	648 - 689	498-538	480-538
$\sigma_{\rm instrument}~({\rm km~s^{-1}})$	50-80	75 28	85 150	13	16	98
Angular sampling ^{b} (diameter)	2″	16	27	47	27	08
Angular FWHM (reconstructed)	2."5	2''1°	25	6″	3.15	15
Spatial FWHM (physical)	1.3–4.5 kpc (P+) 2.2–5.1 kpc (S)	1.1–2.3 kpc	0.8–1.0 kpc	0.4 – $4.2 \rm ~kpc$	0.3–3.0 kpc	0.15 kpc
Spatial FWHM (in R_e)	0.2–0.6 (P+) 0.3–0.9 (S)	0.3–0.8	0.2	0.2 - 0.4	0.1 – 0.2	0.09
IFU fill factor	56%	73%	53%	25%	53%	100%
With gradients measurable ^d to $1.0 R_e$: $1.5 R_e$: $2.0 R_e$: $2.5 R_e$: $3.0 R_e$:	$\begin{array}{c} 4070 \\ 6050 \\ 2570 \\ 2340 \\ 670 \end{array}$	$720 \\ 790 \\ 680 \\ 460 \\ 350$	580 521 462 340 111	$ \begin{array}{r} 128 \\ 122 \\ 80 \\ 26 \\ 3 \end{array} $	39 20 5 0 0	$112 \\ 47 \\ 26 \\ 13 \\ 1$

TABLE 3 Comparison of IFU Surveys

U. Pittsburgh - Jan 2017