Decoding Galactic Chemical Evolution with Gas-phase and Stellar Abundances

Brett Andrews Ohio State 6.4.2013 YCAA Seminar

in collaboration with

Paul Martini

David Weinberg Jennifer Johnson Ralph Schönrich

The Ohio State University

Mass—Metallicity Relation:

 gas-phase abundances of galaxies as a function of stellar mass (and SFR)

Principal Component Abundance Analysis (PCAA): – use PCA to characterize patterns in the abundances

of Milky Way stars

Pristine Gas Inflow from IGM

Gas

Gas

Chemical evolution is governed by

- Inflow
- Enrichment
- Outflow

Simulation snapshot courtesy of Dylan Nelson (Harvard)

Gas

M82: P. Challis, Whipple Obs. Mt Hopkins

3

The Ohio State University

Gas

Metal Production in Stars

AGB stars

Cat's Eye Nebula: HST Crab Nebula: HST Tycho SNR: Chandra, Spitzer, 3.5-m Calar Alto

type la supernovae

> M82: P. Challis, Whipple Obs. Mt Hopkins

core-collapse

supernovae

Metal Ejection in Galactic Winds

The Ohio State University

M82: WIYN telescope & HST (H $\alpha \rightarrow$ purple)

Mass—Metallicity Relation

Gas-phase Oxygen Abundance

oxygen → ½ of metal abundance & bright optical emission lines

gas-phase → recent enrichment history

Stellar Mass

THE OHIO STATE UNIVERSITY

Mass—Metallicity Relation

Features:

- normalization
- low mass slope
- turnover mass
- scatter
- evolution

Direct Method Mass—Metallicity Relation

Outliers from the Mass—Metallicity Relation

Observations:

scatter in Mass—Metallicity correlated:

- lower SFR \rightarrow higher O/H
- higher SFR \rightarrow lower O/H

The Ohio State University

slide courtesy of Molly Peeples

Mass—Metallicity—SFR Relation

Stellar Mass

Mass-Metallicity-SFR relation:

- less scatter
- no evolution out to z ~ 2.5

Fundamental Metallicity Relation

$\log(M_{\star}) - 0.32 \log(SFR)$

$$\mu_{\alpha} = \log(M_*) - \alpha \log(SFR)$$

Mannucci et al. (2010): $\alpha = 0.32$

see also Lara-López et al. (2010)

Strong line metallicity determinations suffer from large systematic uncertainties.

Theoretical Calibrations

Fits from Kewley & Ellison (2008)

Semi-Empirical Calibrations

Empirical Calibrations

Fits from Kewley & Ellison (2008)

Excitation Parameter vs. R23

Andrews & Martini (2013)

- Empirical calibrations are based on high excitation, low metallicity HII regions
- The stacks probe low excitation parameters and high metallicites, like the overall galaxy population.

The Ohio State University

Auroral Lines: Temperature-sensitive

M. Westmoquette

The auroral lines are very weak

York et al. (2000) Strauss et al. (2002) Abazajian et al. (2009)

Apache Point Observatory 2.5 meter telescope

Stacked ~200,000 starforming galaxies to reduce the random fluctuations due to noise, which allows the auroral lines to be detected

Bins in Stellar Mass and SFR

We stacked in bins of

- 0.1 dex in M_{*}
- 0.1 dex in M_{\star} and 0.5 dex in SFR

mass \rightarrow metallicity

M_★ → Kauffmann et al. (2003) SFR → Brinchmann et al. (2004), Salim et al. (2007)

Auroral Lines of a Single Galaxy

Stack of Galaxies

stellar absorption <u>lines</u>

Fit the Underlying Stellar Spectrum

Stellar continuum fit with STARLIGHT stellar synthesis code (Cid Fernandes et al. 2005)

Final Spectrum

Final Spectrum

Direct Method

Direct Method Mass—Metallicity Relation

Normalization

Galactic winds are efficient at ejecting metals...

Low Mass Slope

...especially in low mass galaxies.

Metal Ejection Efficiency

Transform the Mass—Metallicity Relation into the metal ejection efficiency as a function of M_{\star}

mass-loading factor

$$\zeta_{\text{wind}} = \left(\frac{Z_{\text{wind}}}{Z_{\text{ISM}}}\right) \left(\frac{M_{\text{wind}}}{\text{SFR}}\right)$$

Peeples & Shankar (2011)

The Ohio State University

Turnover Mass

Low turnover caused by strong SFR-dependence

SFR-dependence of the Mass--Metallicity Relation

Direct Method Fundamental Metallicity Relation

Stellar Abundances

- Detailed record of a galaxy's enrichment history
- Multi-element abundances → differential enrichment
- combine with asteroseismic ages and dynamical information (enrichment as a function of time and location)

Principal Component Abundance Analysis

- PCAA finds the correlated patterns of elements that explain the strongest variations within the data.
- Dimensionality?
- How does chemical evolution proceed?
- Classify stellar populations?

PCAA of Microlensed Bulge Dwarfs

bimodality in [Fe/H] is recovered in PC1

Andrews et al. (2012)

χ^2 -fitting of principal components to abundance patterns

Andrews et al. (2012)

PCAA of Chemical Evolution Models

PCAA of Chemical Evolution Models

PCAA of Chemical Evolution Models

Metallicitydependent elements

Metallicityindependent elements

All elements \rightarrow

PCAA Applications

- 1. Microlensed Bulge Dwarfs
- 2. Microlensed Bulge Giants
- 3. CEMP stars
- 4. Chemical evolution model
- 5. Schönrich & Binney (2009) chemo-dynamical model
- 6. APOGEE: ~100,000 stars x 16 elements

Summary

- stacked SDSS galaxy spectra to measure metallicities with the direct method, which relies on weaker but more reliable lines
- direct method Mass—Metallicity relation
 - extends to low mass
 - strong SFR-dependence
- Principal Component Abundance Analysis of existing stellar abundance data sets and chemical evolution models with a future application to APOGEE data

Classification with PCAA

Classification with PCAA

Classification with PCAA

Evolution of the Mass—Metallicity Relation

Maiolino et al. (2008)

Sample Selection

- Remove AGN according to BPT diagram (Baldwin et al. 1981; Kauffmann et al. 2003)
- 0.027 < z < 0.25

– both [OII] $\lambda 3727$ and [OII] $\lambda\lambda7320,\,7330$

- Same signal-to-noise ratio cuts as Tremonti et al. (2004):
 - Hβ, Hα, [NII] λ 6583 > 5σ

- [OIII] λ 5007 > 3 σ or log([NII] λ 6583 / H α) < -0.4

Final Sample

- ~200,000 star-forming galaxies
- $M_{\star} \rightarrow$ Kauffmann et al. (2003)
- SFR \rightarrow Brinchmann et al. (2004), Salim et al. (2007)

Direct Method

Strong Line Indicators

Fits from Kewley & Ellison (2008)

Strong Line Indicators

- R23 = ([OII] λ 3727 + [OIII] λ 4959, 5007) / H β
- N2O2 = [NII] λ 6583 / [OII] λ 3727
- N2 = [NII] λ 6583 / H α
- O3N2 = ([OIII] λ 5007) / H β) / ([NII] λ 6583 / H α)

R23 is double-valued

Tremonti et al. (2004) 51

Electron Temperatures

Black line: Te[OII]—Te[OIII] relation (Garnett 1992)

Stacks of Galaxies with Detectable Auroral Lines

Accounting for undetected [OIII] λ4363

Asymptotic Logarithmic Fit

$$12 + \log(\mathrm{O/H}) = 12 + \log(\mathrm{O/H})_{\mathrm{asm}} - \log\left(1 + \left(\frac{M_{\mathrm{TO}}}{M_{\star}}\right)^{\gamma}\right)$$

- Polynomial fits can cause unphysical trends when extrapolated
- Physical justification for a turnover and asymptotic behavior at high mass

Metal Ejection Efficiency

Peeples & Shankar (2011)

Metallicity-weighted mass-loading factor

$$\zeta_{\rm wind} = \left(\frac{Z_{\rm wind}}{Z_{\rm ISM}}\right) \left(\frac{\dot{M}_{\rm wind}}{\rm SFR}\right)$$

Transform the Mass— Metallicity Relation into the metal ejection efficiency as a function of M_{\star}

Metal Ejection Efficiency

- nucleosynthetic yield: y = 0.015
- α ~ order unity (different from α in the fundamental metallicity relation)

•
$$F_{gas} = M_{gas}/M_{\star}$$

Transform the Mass—Metallicity Relation into the metal ejection efficiency as a function of M_{*}

N/O

Outlook

- Kevin Croxall et al. (in prep.) Herschel measurements of FIR fine-structure lines
- High-z direct method metallicity measurements (plus stellar masses and SFRs) of high redshift galaxies

PCAA of Chemical Evolution Models

PCAA of Chemical Evolution Models

PCAA of Chemical Evolution Models

Direct Method Mass—Metallicity Relation

Fits from Kewley & Ellison (2008)